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Abstract

In this paper, we propose a fast approach to
impulse response and noise-variance identification
for a finite-order, linear, time-invariant, single-
input/single-output system, whose input driving
noise is white (stationary or nonstationary) and
measurement noise is stationary, white and
Gaussian. Our algorithm is an iterative block
component method that includes two stages, decon-
volution and prediction-error identification.
Experiences with our method indicates that it works
well and saves about an order of magnitude in
computation. Analyses and examples are given
in this paper to support this claim,

I. Introduction

In this paper we are interested in identification
of a finite-order, linear, time-invariant single-input/
single-output discrete-time system, with the
convolution representation
k
Z Vik-julj) + n(k) . (1)
=1

z(k) =

In (1) z(k) is the observed output for k=1,2,...,N;
V(k) is the system's impulse response (IR); n(k) is
zero-mean, white Gaussian observation noise with
variance R; and y(k) is a zero-mean, non-stationary
white driving noise sequence, where

E{ui} = Cak) (2)

in which q(k) accounts for the time-variability of

Ef uz(k)} and C represents an additional scale factor,
We seek estimates of V(k) and R, denoted Q’(k) and ﬁ,
respectively, and are especially interested in the
situation when V(k) is non-minimum phase.

Many techniques have been developed for
solving this identification problem, although most
are limited to minimum phase systems. The recent
studies in [3], [5] and [10] are for non-minimum
phase systems. Our results are closely related to
those in [3] and [9], in which it is assumed that input
sequence u(k) cannot be observed.

One popular technique for identifying V(k) and
R is to begin with a state-space model for Eq. (1):

x(k) = ®x(k-1) + yu(k) (3)
and
z(k) = h'x(k) + n(k) , (4)
where
¢ o2 n
¢ = ""'"";"" (5}
In-l l; e
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Y = col(1,0,...,0) (6)
and

n

h o= col (8,8, ... 8) - (7)
It is well known that

V (k) =Q'§k}_ Yk=0,1,...; (8)
hence, if we compute maximum-likelihood (ML)
estimates of ARMA parameters Ayo @psee s &

51, 52, N En, then we can compute a ML estimate,

V(k), of V(k), from
Vk=0,1,..., (9)

where E = col (é1’§2’ e, ASn) and % is defined

similarly.

Mehra [11] and Schweppe [12], as well as
others, showed howto obtain ML parameter estimates
for all of the unknown parameters in Eqs. (3) and (4)
when y(k) cannot be measured [e.g., u(k) can be
thought of as a non-invasive input, such as wind
acting on a launch vehicle] and is assumed to be white
gaussian with variance e Let 5 denote the complete

set of parameters in this case; then § o col (cxl, oy
The log-likelihood

function in this case can be expressed as

2
. dn: 511 52' “eey an, Cu, R-).

L{slz) = tnpzlf) =

N
-2 T 22615-0/n, () + gnmi) #an 2] (10)

=1 °
where
z = col[z(1),2(2),...,2z(N)], (11)
2,Gli-0 = z0) - £,615-1 (12)
and =
ng()) = Var [Z,(jlj-D]7. (13)

Signals Zé(jlj-l) and né(j) are computed from a

Kalman filter, and are subscripted -5 to denote a
dependence of these quantities on the unknown §-
parameters. Kormylo and Mendel [3],[9] (see also
Mendel [4]), as well as others, use a Marquardt-
Levenberg algorithm to find § [18]. That algorithm is

. . -1
L5417 & T (HFDY) gy e
where
g; = Lylslz) =[3L(8l2)/38)fs3. ()
. ==
an
H, = L, (5l2) =[a2L<2|£>/592]|_=§-1 : (e
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Matrix H; is a pseudo-Hessian that can be computed
once g; has been computed; matrix D; is diagonal and
is chosen so that H;j+D; is positive definite and
L&, |2~ L2

In order to compute g; we must simulate
Kalman filter sensitivity systems, usually, one for
each unknown element in §. These calculations, as
well as the Kalman filter itself, are computationally
intensive, and in some applications, such as seismic
deconvolution and wavelet estimation, have been
rejected as impractical,

We remind the readers, at this point, that our
overall goal is to obtain V(k), so that 5 for us is,
merely a means to an end. In other situations, §
may be the end result iself (e.g., postflight data
analysis). In the latter situations, when y(k) cannot
be observed, the preceding, approach may be the only
feasible one for computing &,

A second popular technique for identifying V(k)
and R is to begin with a difference-equation model for
Eq. (1), assuming first that

V(z) = B(z)/A(z) (17)
where n .
Alz) = 1- 5 a2} (18)
i=1 !
and n .
B(z) = & 8.z " . (19)
i=1 '

In these equations, z'1 is the unit delay operator.
The difference equation model for Eq, (1) is

A(z)z(k) = B(z)ulk) + A(z)n(k) . (20)

A wide range of parameter estimation tech-
niques can be used to identify Ups Upsenes A,
eli BZ! LRI
[i. e., u(k) can be thought of as an invasive input,
such as a test signal]. Let 9 = col (cyl, Uprvees O,
Blsszy---;an;R). T
of 81 then we can compute the ML estimate, V(k), of

V(k), from
n s n :
Voo = 271 (T 8-z s (21)

, B and R, when y(k) can be measured

If we can compute ML estimates

We direct our attention at a prediction-error
method for obtaining Signal e(k) denotes the
prediction error,

k
) = z(k) - T V(k-j)uli) . (22)
j=1

From Eqgs. (22) and (17), we see that £(k) can be

expressed as
Afz) [z(k) -e(k)] = B(z)ulk), (23)

which represents a finite-difference equation for
computing £(k).

The log-likelihood function for this problem
can be expressed as

Ligtlz,u} = tnpzlel W =

Mz

[ez(k)/R+2nR+£n 2=7] . (24)
1

o]~

k

1348

As in the preceding problem, we can use the
Marquardt-Levenberg algorithm, (14), to compute

2 Q e

gil. Astrom and Bohlin [7] show that the gradient g
can be computed from two relatively simple finite-
difference equations. These calculations, as well as
Eq. (23), are not computationally intensive, so that
this prediction-error method is quite practical.

The reader has probably observed by now that
we have described two quite different identification
problems, In the first one, input u(k) cannot be
measured and computation is intensive. In the
second one, input p(k) can be measured and compu-
tation is non-intensive. In this paper we show how
to transform the first problem into the second one,
using deconvolution. By means of deconvolution we
remove the effect of IR V(k) and noise from z(k),
that one is left with an estimate ofél In this paper,
we do not estimate the variances r:,r or Cq(k) of the

input. They are assumed known or f1xed. The
reason for this will be explained in a later section.

The approach that we suggest for identification
of G , called a block component method (BCM), is:
(1) “Obtain an initial estimate of €', denoted —O’

(2) Obtain ul(k) by means of deconvolution, using é
(3) Obtame

prediction-error algonthm, using ﬁl(k) in place of

=0
in place of @_1,

by means of a

ulk); (4) Obtain uz(k) by means of deconvolutwn,
(5) Obtain 9
a prechctmn-error algorithm, using le(k) in place of

u(k); etc. Our BCM algorithm continues until the
likelihood function reaches a local maximum.

using 9 % in place of il, by means of

The proposed algorithm is iterative but not
recursive. Many recursive algorithms are available
in the system identification literature (e.g., recur-
sive instrumental variables [13], recursive
generalized least squares [14], recursive maximum-
likelihood [15]). These algorithms update system
parameters each time a new measurement becomes
available, We update system parameters using all
of the data at every iteration,

II. Maximum-Likelihood Deconvolution

According to Mendel [1], "Deconvolution is the
signal processing procedure for removing the effects
of a signal-distorting-system (e.g., communication
channel, seismic source wavelet) from a desired
signal (e.g., message, reflectivity sequence).'" The
signal-distortion-system is represented by IR V(k),
and, in this paper is assumed unknown, so that it
must be identified,

In this section, however, V(k), R and system
order n are assumed known a priori, andwe show
how to obtain the maximum-likelihood estimate of
ulk), QML(k\N), using measurements z(1), z(2),

.., z(N). We discuss two cases: first when, y(k)
is white and Gaussian, and second when, u(k) is
Bernoulli-Gaussian.

In the first case, when u(k) is white and
Gaussian with variance g%, we define the likelihood

function S{_glg_, 8, R } to be maximized as

’cu
s{ulz 8 R, ci] = p(zlg,ﬁ,R)p(glcu) (25)

where



col (w(1),u(2), ..., wN)) (26)

8. (2D

5%
and

fa] -

5 = col (ozl,az,...,ozn, Bl’ Boyeen
Note that £ includes only IR parameters, We want to
find the optlrnum estimate uML such that

S{ u\ z, 5, R, o, 1 reaches a maximum when y = EML
When 5, R and ¢, are assumed known then z

and | are jointly Gau551an, thus, the maximum-
likelihood estimate Haqr is the same as the minimum-

. . ~
variance estimate v’ and

~ " e N
YvmL BEpmy © E}:‘E . (28)

Because both y and z are jointly gaussian, we can
express (28) as [4]

~ -1

1 = !

&t E{pz'}[E{z2'}]"z . (29)
We compute the components of QMI using Mendel's

minimum-variance deconvolution (MVD) algorithm

(4], 5
Gy &N = slyead (30)

where S_(k'N) satisfies the following time-varying
backwards state equation which is driven by the

innovations process, 'z"(k]k-l) that is obtained from a
Kalman filter:

rkIN) = 8, 0zt 1|N) + b M ERK-D (31
where k = N,N-1,...,1, r(N+1|N) = 0,
3,00 = [I -K@n]' 8, (32)

K(k{ is the Kalman gain and n(k) is the variance of
Z(k |k-1).

In the second case, we assume that y(k) is
given by the following product model

uk) = rk)aq(k) (33)
where r(k) is zero mean, white, and Gaussian, with
Errf)] = C (34)

and q{k) is Bernoulli with

Pr[q(k)] = ; = . (35)

When q(k) is known a priori, then input u(k) is
a non-stationary white Gaussian process with
variance
= Q¥ ET (k)]

E{0) lqm) = Cq(k) . (36)

In this case, we defire the likelihood function

to be maximized as

S(rlz,q,5,R,CY =plzlr, g, 8 R)p(z]C) (37)
where
r = col (r(1),7(2),..., (N) (38)
and
q = col (q(1),q(2),...,q(N)) . (39)

Using the same procedure as described above,
Mendel [4] and Kormylo and Mendel [2] prove that

IML T EImv (40)
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and

Spmp T Impn (41)
In this case, maximum-likelihood deconvolution
(MLD) is the same as MVD, and we compute QML

using Mendel's MVD algorithm.
When q(k) is unknown and random, the
deconvolution problem becomes more complicated.

Its solution involves detection and estimation and is
fully described in Mendel [4],

III, Prediction-Error Identification

In this section, we discuss the computations of
the gradient g and the pseudo-Hessian Hi for the

prediction-error method when y(k) is a test input
signal,

Equation (24) can be expressed as

1 N2
L{E,Riz.g} =-3 2 [£%(k)/R+4nR+4n 2-]
k=1
= 11)\ (_Q)-—ﬁnR-ilanH (42)
where

1 N2

I8 = 3 > etk . (43)
k=1

From (43) and (22), we see that J(£) is greater than
zero and does not depend on R, Maximizing

L{8, Rlz, u} can be accomplished by first finding
the minimum of J(g) with respect to 8, and then
finding R. The latfer is accomplished by taking the
derivative of (42) with respect to R and setting it
equal to zero. Doing this, one finds

R =& min 38} . (44)

u

From (23), we see that £(k) is a linear function
of z(k) and y(k), but is not a linear function of §;
therefore, J(£) is also a nonlinear function of 'Q_ We
use the Marquardt-Levenberg algorithm to update ER
in order to decrease J(£). To do this, we need to -1
compute the gradient and pseudo-Hessian of J(§) with
respect to 8. For our present purpose, we redefine
the gradient g; as

g; = 7y Eraneseg] (45)
9=5.
- =i
and the pseudo-Hessian H. as
~ 2
H 2 T, = [323(8)/ 22| (46)

|(D>

=
= =i

Using a procedure similar to the one in [7], we
determine that the elements of g; can be computed by
solving the difference equations

A(z)ea(k) = eg(k-1) - z(k-1) (47)
and

Alz) ey (k) = -u(k) (48)
where

e (k) = as(k)/acz1 and e, (k) = aa(k)/aal (49)

Additionally, as(k)/aa. = ¢ (k-i+1) and -
X

dek )/BB (k i+1), i=2,...,n. (50)

Furthermore, an element of the pseudo-Hessian can
be computed from one of the following three



equations:
N N
2 (BE(k)/aai)(BE(k)/Ba.) =7 e (k-i+l)e (k-j+1), (51)
k=1 Jook=12 @
N N
(32(k)/28,)(2e(k)/38,) = 2 ey (k-itl)ey (k-j+1)  (52)
k=1 k=1
and
N N
T (3e(k)/30)(2e(k)/28,) = T e (k-it1)e (k-j+1)  (53)
k=1 ¥ox=1®

where 1 <i<nandl <j=<n.
Observe that we only have to solve three
difference equations--(23), (46) and (47)--in order to

compute J, g and Hi'

IV. Block Component Method for Identification

In this section, we show, by means of decon-
volution, how to convert the identification problem
when p(k) cannot be measured to the identification
problem when y(k) can be measured.

When (k) is Bernoulli-Gaussian and g and C
are known a priori, we determine _e_, R and r by
maximizing

s{r,8,Rlz,9C} = p(zlr, g, 8 Rp(zfC) . (54)
Kormylo and Mendel have shown that the overall
optimal solution for estimating r, 2 and R is to first
estimate § and R and then estimate r. Their approach
for estimating £ and R was developed by treating r as
unknown driving noise [though g is known], and, as
explained in Section I, this approach is computation-
ally intensive.

Observe that when r is known (i.e., uis
known) maximizing (53) is equivalent to maximizing
(zir q,E,R) or &n p(zlr q, 5, R) which is exactly the
same as the log-likelihood function given by (42).
Additionally, when § and R are known, maximizing
(54) is equivalent to the MLD problem described in
Section II.

Based on these observations, we suggest the
block component method (BCM), depicted in Fig. 1,
for computing a local optimum of the likelihood
function S{r, 8, R|z,9,C

The first block in Fig. 1 provides initial
values, —e~0 and R , for £ and R, Generally, we

choose the 1n1t1al value of 8 by determining the
minimum-phase IR associated with covariance
information for the measurements. The second
block in Fig, 1, pgovides estimates of r, it regyires
values for 6 and R. The third block provides 3 and
R Of course, r, obtained from the MVD filter, is
used to update § and R,

Each block in our BCM guarantees that
Sir,8 R \_g,g_'} increases at every iteration. When
S{E E R z,g} reaches a local maximum, the

algorithm stops.

When u{k) is white and gaussian with variance
o, we determine 8, R and y by maximizing
)

2
sty & Rlz. o2 = plzlu & Rpwlo) (55)

This is just a special case of the preceding situation
in which we set q(k) = 1 for all k, oﬁ Candr=y;
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thus, we do not have to discuss the BCM for this case,
In our BCM, we assume that C is known, and,
therefore, we do not estimate it. If C,is unknown,

we set it equal to a positive number, C. The reason
for doing this is that a scale factor cannot be

resolved from the convolutional model

z{k) = u(k) *V(k) + n{k) = (Ku(k))*(%v(k)) +n(k) when

both y(k) and V(k) are unknown. In our BCM, this
always occurs because even if g(k) is known y is
estimated via MVD [9]. -

For a discussion on the identifiability of V(k)
and R when y is known, see [16]. Because V(k) and R
are identifiable when u(k) is known, if, in our Fig. 1
BCM, (k) converges to the true u(k), then V(k)
[which is characterized by j_] converges to true IR
V.I.(k) as N - », In other words, when y(k) is known,

the performance of the block that updates § and R
depends on N. In[17] it is shown that _L;'ML is more

likely to be close to y for high SNR; thus, the
performance of our BCM depends on SNR, which
determines the performance of the MVD {ilter, and
N, which determines the performance of the
prediction-error identification method.

V. Computational Advantages

Kormylo and Mendel [3] estimate the wavelet
and noise variance using the approach that treats the
input u(k) [=r(k)q(k)] as an unknown driving noise,
although q(k) is assumed to be known., Their
maximum-likelihood algorithm is an iterative one
that needs computationally intensive Kalman filter
sensitivity equations. Recently, Goutsias, Mendel
and Chi [8] made a computational comparison of
their algorithm and ours (Fig. 1), We present some
of these results below,

Assume that 3, Y and h are in phase-variable,
form, The total number of computations to update ]
and R one time, for the Kormylo-Mendel (i, e., KM)
algorithm, is approximately
T, =X (120 49307411304 36) - 2 (8> 36n66n+25) flops,

(56)
where one flop indicates one real multiplication and
one addjtion.  The total number of computations to
update 8 and R one time, for the Chi-Mendel (i.e.,
CM) algorithm is

= 10nN + %n (2n2+9n+6) flops . (57)

.
Note that TZ << Tl'

In the CM algorithm, we do not have to update
£ and R just once during each iteration. We define
an iteration for our block component method as one
in which ¥ is estimated one time using an MVD filter
and 8 and R are updated L times using the Marquardt-
Levenberg algorithm. The total number of computa-
tions for an MVD filter is about the same as that for
two Kalman filters, and is

T, = N(5n°+ 13n) flops . (58)
The total number of computations for one iteration of
the CM algorithm is

T = LT, +T,. (59)

To illustrate these numbers, assume N = 300
and n = 4; then, Tl = 411, 830 flops, T2 = 12,197

flops and T3 = 39, 600 flops. The ratio Tl’/T is about



8 for L = 1 and 4 for L. = 5, We have observed, from
simulations, that when L > 1, our BCM converges in
fewer iterations than when L = 1.

VI, Examples

In this section, we provide an example which
demonstrates that our proposed Section IV BCM
works well,

Synthetic noisy data were generated by
convolving an input sequence, yk), with a wavelet,

V,I.(k). and adding white gaussian noise to the result.

In every iteration of our BCM we estimate r once
using an MVD filter and update £ and R L =75 times
using the Marquardt-Levenberg Talgorithm., We used
a 4th_grder non-minimum phase ARMA wavelet
whose transfer function (taken from [4]) is

"L 0.8233¢2

V. (2)=[-0.76286=1, 5884z

2(2)
[1-2.2633z

2.0.0002224192°],

-3

-0.4980327°+0.04554627 7],

(60)

Figure 2 depicts the synthetic noisy data for which
S'\IR 10. True parameter values for R, C and ) are
1698x10-3, 0.0225 and 0.05, respectively. The

total number of measurements is N = 300. Initial
values for R and C were chosen to be 0.2x10-> and
0.015, respectively. For reasons explained in
Section IV parameter C was fixed at its initial value.

1y, 7734272

Figure 3 depicts both the initial IR Vo(k), and
the true IR V.l.(k). IR Vo(k) was obtained using a

singular value decomposition (SVD) method [6]; its
transfer function is

vo(z)=[_1. o47377+2.5217122'1-2.104901z'z+o.6229523231/
[1-2.73575527142.7849492°%-1.1900922 " 2+0.1638482 1.
(61)

One can check that V (k) is minimum phase.

0
also, that although the initial wavelet looks similar to
the true wavelet, its phase is incorrect,

Using the ARMA parameters of Vo(k) as the
E-O’ in our BCM, the BCM

converged i;} 6 iterations. The wavelet \?’(k) asso-
ciated with ¢ is non-minimum phase and has the
transfer function

initial parameters,

V(z)=[-1. 016298+2.238042 1-1,3470012 >+0.1249652 3]/

2 .3 -4
-0.68725252°+0,092249022 "1,
(62)

Observe how

[1.2.37087532 ++2.0156822

Figure 4 depicts '\'}(1-:) and VT(k)‘
close V(k) is to VT(k). Figure 5 depicts g:l(k) and
(k). Decause gq(k) has been assumed to be known for
all k, (1 only has non-zero values at those time points
where (k) does. We see that {j(k) is also very close
to (k).

The final estimate for R is R = 0, 1545x107°,
Quantify R also represents the mean-square error of

the estimated output,

The CPU time on a PDP-10/KI computer for
this example was 16 seconds, For other examples,

see [16].
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Observe,

VII. Conclusions

We have proposed a fast (computationally
nonintensive) maximum-likelihood algorithm that can
estimate a non-minimum (or minimum) phase IR for
a linear time-invariant system. Our algorithm is an
iterative block component method that includes two
stages, one stage of which is deconvolution and the
other stage of which is prediction-error identifica-
tion. The user may wish, and can, replace the
prediction-error algorithm with his favorite ML
identification algorithm.

In time-series identification problems where
there are no true parameters the Mehra/Schweppe
approach to parameter estimation, which is
computationally intensive, can be replaced by our
BCM,

Experiences with our method indicates that it
works well and saves about an order of magnitude in

computation.
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