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Abst rac t  

In   this   paper ,   we  propose a fas t   approach to 
impu l se   r e sponse  and  noise-variance  identification 
for a f in i te -order ,   l inear ,   t ime- invar ian t ,   s ing le-  
input /s ingle-output   system,  whose  input   dr iving 
noise   is   whi te   (s ta t ionary  or   nonstat ionary)   and 
measurement   noise   is   s ta t ionary,   whi te   and 
Gaussian.   Our   a lgori thm  is   an  i terat ive  block 
component  method  that   includes  two  stages,   decon- 
volution  and  prediction-error  identification. 
Experiences  with  our  method  indicates  that  it works  
well   and  saves  about  an  order of magnitude  in 
computation.  Analyses  and  examples  are  given 
in   this   paper   to   support   th is   c la im.  

I. Introduction 

In  this   paper   we  are   interested  in   ident i f icat ion 
of a f ini te-order ,   l inear ,   t ime-invariant   s ingle- input /  
s ingle-output   discrete- t ime  system,  with  the 
convolution  representation 

In  (1)  z(k)  is   the  observed  output  for k = 1, 2 , .  . . , N; 
V(k)   i s   the   sys tem's   impulse   response   ( IR) ;   n (k)   i s  
zero-mean,   white   Gaussian  observat ion  noise   with 
var iance  R; and  u(k)  is a zero-mean,   non-stat ionary 
white   dr iving  noise   sequence,   where 

E{ u (k)! = C q(k) 
2 

( 2 )  

in   which  q(k)   accounts   for   the  t ime-variabi l i ty  of 

E{ u ( k ) ?  and C represents   an  addi t ional   scale   factor .  
We  seek  es t imates  of V(k)  and  R,  denoted  O(k)  and 8,  
respect ively,   and  are   especial ly   interested  in   the 
s i tuat ion  when  V(k)   is   non-minimum  phase.  

2 

Many  techniques  have  been  developed  for 
solving  this  identification  problem,  although  most 
a r e   l imi t ed   t o   min imum  phase   sys t ems .   The   r ecen t  
studies  in [3] ,  [SI  and [ l o ]  a r e   fo r   non-min imum 
phase   sys tems.   Our   resu l t s   a re   c lose ly   re la ted   to  
those  in  [ 3 ]  and [SI,  in   which  i t   i s   assumed  that   input  
sequence  u(k)  cannot  be  observed. 

One  popular  technique  for  identifying  V(k)  and 
R is  to  begin  with a s ta te-space  model   for   Eq.   (1) :  
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y. = col   ( l ,O,  .. .,O) ( 6 )  

- h = col ( g 1 ,  32,  .. . , 3 n . ( 7 )  
and 

It is  well  known  that 

V(k) = &'$x V k = O , l ,  ... : (8) 

hence, if we  compute  maximum-likelihood  (ML) 
es t imates  of ARAVA pa rame te r s  erl. a 2 , .  . . , 
31, 3 2 , .  , , , Bn. then  we  can  compute a ML es t imate ,  

? (k ) ,  of V ( k ) ,   f r o m  

* - k  

k 

'n3 

<(k)  = g $  1 V k = O , l ,  . . .  , ( 9 )  

where  6 = col (31 ,  $,, . . . , 5,) and $ is   defined 

s imi la r ly .  

* A  

Mehra  [ 111 and  Schweppe [ 121, as   wel l   as  
others,  showed  howto  obtain ML parameter   es t imates  
for   a l l  of the  unknown  parameters  in  Eqs.  ( 3 )  and (4)  
when  u(k)   cannot   be  measured  [e .   g . ,   u(k)   can  be 
thought of a s  a non-invasive  input,  such  as  wind 
acting  on a launch  vehicle]  and is assumed  to   be  white  
gaussian  with  var iance T'. Let 2 denote  the  complete 

s e t  of parameters   in   th i s   case ;   then  5 col (a, ,  a 2 ,  
. . . , zn, 9,, $,, . . . , Bn,  5' R).  The  log-likelihood 

U' 
function in  this   case  can  be  expressed  as  

L! 

L ~ A ~ Z ]  = i n   p ( g ( ~ )  = 

Signals  iZE(jIj-l)  and q ( j )  a r e   c o m p u t e d   f r o m  a 5 
Kalman  f i l t e r ,   and   a re   subscr ip ted  - 5  to  denote a 
dependence of these  quantit ies  on  the  unknown E -  
parameters.   Kormylo  and  Mendel  [3],  [9 ]  ( s e e   a l s o  
Mendel [4]),  a s   w e l l  as o the r s ,   u se  a Marquard t -  
Levenberg  algorithm  to  find 1 [18].   That  algorithm  is  

8 = ^s t (Hi fDi ) -  1 gi - i t 1  - 
where  
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Matrix Hi i s  a pseudo-Hessian  that  can  be  computed 
once  has  been  computed;  matrix Di is diagonal  and 
is   chosen so that  HitDi  is   posit ive  definite  and 

L ( i i t l  Iz) > L(&Iz) .  

In   o rder  t o  compute gi we  must   s imulate  
Kalman  fi l ter   sensit ivity  systems,  usually,   one  for 
each unknown element  in 6. These  calculat ions,   as  
wel l   as   the   Kalman  f i l t e r   i t se l f ,   a re   computa t iona l ly  
intensive,   and  in  some  applications,   such  as  seismic 
deconvolution  and  wavelet  estimation,  have  been 
rejected  as   impract ical .  

We remind   t he   r eace r s ,   a t   t h i s  Roint,  that  our 
overall   goal  is   to  obtain  V(k),  so that 5 for   us  isA 
m e r e l y  a means  to  an  end.  In  other  si tuations,  6 
may  be  the end result  iself  (e.  g.,   postflight  data 
analysis) .   In  the  lat ter  si tuations,   when  u(k)  cannot 
be  observed,  the  preceding,approach  may  be  the  only 
feasible  one  for  computing 6. 

A second  popular  technique  for  identifying  V(k) 
and R is  to  begin  with a difference-equation  model  for 
Eq. ( l ) ,  assuming  f i r s t   tha t  

V(z)  = B(z) /A(z )   (17 )  
where  n 

A(z)  = 1 - 2 a. z 
-i 

i = l  
and n 

B(z)  = Biz . 
i= 1 

-i 

In  these  equations,  z is   the   uni t   delay  operator .  -1 

The  difference  equation  model  for  Eq.  (1) is 

A(z)z(k)  = B(z)u(k)  t A(z)n(k)  . ( 2 0 )  

A wide  range of parameter   es t imat ion   tech-  
niques  can  be  used  to  identify al ,  a2,.  . . , 
PI, B 2 , ,  . . , 9, and  R,  when  u(k)  can  be  measured 

[i. e. ,   u(k)  can  be  thought of as   an  invasive  input ,  
such   as  a tes t   s ignal] .   Let  i1 = col  (a l , a2 , .  . ., 'n7 

Bl, B2,.  . . , Bn, R). If we  can  compute M L  es t imates  

of i1 then  we  can  compute  the M L  est imate ,   ?(k) ,  of 
V(k), f r o m  

'nr 

We direct   our   a t tent ion  a t  a pred ic t ion-er ror  
method  for  obtaining 61. Signal  E(k)  denotes  the 
p red ic t ion   e r ro r ,  

F r o m  Eqs. ( 2 2 )  and (17),   we  see  that   E(k)  can  be 
expressed   as  

A(z)   [z(k)  - E @ ) ]  = B(z)p(k)  (23) 

which  represents  a finite-difference  equation  for 
computing ~ ( k ) .  

The  log-likelihood  function  for  this  problem 
can  be  expressed  as  

A s  in  the  preceding  problem,  we  can  use  the 
Marquardt-Levenberg  a lgori thm, (14), to   compute 

e ! .  X s t r c m  and  Bohlin  [7]  show  that  the  gradient + 
can  be  computed  from  two  relatively  simple  f inite- 
difference  equat ions.   These  calculat ions,   as   wel l  as 
Eq. (23 ) ,  a r e  not  computationally  intensive, so that  
this   predict ion-error   method is qui te   pract ical .  

1 

The  reader   has   probably  observed  by  now  that  
we  have  described  two  quite  different  identification 
problems.   In   the  f i rs t   one,   input  p(k) cannot  be 
measured  and  computation is intensive.  In the  
second  one,   input  p(k)  can  be  measured  and  compu- 
tation is non-intensive.   In  this  paper  we  show how 
to  t ransform  the  f i rs t   problem  into  the  second  one,  
using  deconvolution.  By  means of deconvolution  we 
remove  the  effect  of IR  V(k)  and  noise  from  z(k),  so  
that   one is left   with  an  estimate of (k) .   In   this   paper ,  
we  do  not   es t imate   the  var iances  u y o r  C q(k) of the  

input.  They a re   a s sumed   known   o r   f i xed .   The  
reason  for  this  will   be  explained  in a la ter   sect ion.  

Ci 

The  approach  that  we  suggest  for  identification 
of il, called a block  component  method  (BCM), is: 
(1)   Obtain  an  ini t ia l   es t imate  of gl, denoted 3; 
( 2 )  Obtain  (k)  by  means of deconvolution,  using 8 
in  place of gl; ( 3 )  Obtain 1 by means  of a 

predict ion-error   a lgori thm,  using  (k)   in   place of 

y(k);   (4)  Obtain  b2(k)  by  means of deconvolution, 

using 1: in  place of 1 ; ( 5 )  Obtain i2 by means  of 

a pred ic t ion-er ror   a lgor i thm,   us ing   b2(k)   in   p lace  of 

p(k);  etc.  Our B C M  algorithm  continues  unti l   the 
likelihood  function  reaches a local   maximum. 

- 1  
-0 1 A1 

1 

1 - 1  

The  proposed  a lgori thm  is   i terat ive  but   not  
recurs ive .   Many  recurs ive   a lgor i thms  a re   ava i lab le  
in   the   sys tem  ident i f ica t ion   l i t e ra ture   (e .   g . ,   recur -  
s ive   ins t rumenta l   var iab les  [ 131, r e c u r s i v e  
genera l ized   leas t   squares   [14] ,   recurs ive   maximum- 
likelihood  [15]).  These  algorithms  update  system 
p a r a m e t e r s   e a c h   t i m e  a new  measurement  becomes 
avai lable .   We  update   system  parameters   using 
of the   da ta   a t   every   i t e ra t ion .  

11. Maximum-Likelihood  Deconvolution 

According  to  Mendel [ l ] ,  "Deconvolution is the  
s igna l   p rocess ing   procedure   for   removing   the   e f fec ts  
of a s iga l -d is tor t ing-sys tem  (e .   g . ,   communica t ion  
channe l ,   s e i smic   sou rce   wave le t )   f rom a des i red  
s ignal   (e .   g . ,   message,   ref lect ivi ty   sequence) . ' '   The 
s igna l -d is tor t ion-sys tem is represented  by  IR  V(k) ,  
and,  in  this  paper  is   assumed  unknown, so that it 
must  be  identified.  

In  this  section,  however,   V(k),  R and   sys tem 
o r d e r  n a re   assumed  known a pr ior i ,   andwe  show 
how to, obtain  the  maximum-likelihood  estimate of 
p(k) ,   pML(kIN) ,   us ing   measurements   z ( l ) ,  2(2),  

. . . , z(N) .  We  discuss  two  cases:   f irst   when,  u(k) 
is white  and  Gaussian,  and  second  when,  p(k) is 
Bernoul l i -Gaussian.  

In   the  f i rs t   case,   when  p(k)   is   whi te  and 
Gaussian  with  variance u2 we  define  the  likelihood 

function SI u\g,e, R, u s  ] to   be  maximized  as  
11' 

S I  g\z,i,  R, u ] = p ( ~ \  .& S, R)p(g \  up) 
2 2 
U 

(25) 

w h e r e  
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Note  that  includes only 1% parameters .   We  want   to  
f ind  the  opt imum  est imate  uML such  that  

S { g (  z,?, R, d 1 r e a c h e s  a maximum  when M = 2 2 
u ML' 

When g, R and ca are   assumed  known  then  2 2 

and E are   jo in t ly   Gauss ian ;   thus ,   the   maximum- 
l ikel ihood  es t imate  gML is t h e   s a m e   a s   t h e   m i n i m u m -  

var iance   es t imate  kV, and 

Because  both Q and are   jo in t ly   gauss ian ,   we   can  
express   (28)   as   [4]  

w h e r e  '(k 1 X) sat isf ies   the  fol lowing  t ime-varying 
backwards  state  equation  which is dr iven  by the  
innovat ions  process ,   z(klk-1)   that  is obtained  f rom a 
Kalman  f i l t e r :  

- r (k1N) = eb(k);(ktl IN) t hT- l (k ) I (k /k - l )  (31) 

where  k = N , N - 1 , .  . . , 1,  L(Nt1  IN) = 0, 
$b(k) = [In - K(k)h ' ] '  I '  , (32) 

K(k   i s   the   Kalman  ga in  and  n(k) is the   va r i ance  of 
I ( k  Ik  -1). 

In   the   second  case ,   we   assume  tha t  U(k) is 
given by the  following  product  model 

d k )  = r (k)   q(k)   (33)  

w h e r e   r ( k )  is zero   mean,   whi te ,  and Gaussian,  with 

ECr (k) ]  = C , 2 
(34) 

and q(k)   is   Bernoul l i   wi th  
r 

When  q(k)  is  known a priori ,   then  input  u(k)  is  
a non-s ta t ionary   whi te   Gauss ian   p rocess   wi th  
var iance  

E[L (k) lq(k) :  = q (k)Err2(k)2 = Cq(k) . (36) 
2 2 

In this  case,   we  defice  the  l ikelihood  function 
to   be   maximized   as  

Using  the  same  procedure  as   descr ibed  above,  
Mendel  [4]  and  Kormylo  and  Mendel [2] prove  that  

A 

-ML = LMV 1 (40) 

In  this  cas  e,  maximum-likelihood  deconvolution 
(MLD)   i s   t he   s ame   a s  MVD, and we  compute 2 
using  Mendel 's  MVD algori thm. 

ML 

When  q(k)  is  unknown  and  random,  the 
deconvolut ion  problem  becomes  more  complicated.  
Its  solution  involves  detection  and  estimation  and  is 
fully  described  in  Mendel [4]. 

111. Predict ion-Error   Ident i f icat ion 

In  this   sect ion,   we  discuss   the  computat ions of 
the   g rad ien t  and the  pseudo-Hessian H. for   the  

prediction-error  method  when  u(k)  is  a test  input 
signal. 

Equat ion  (24)   can  be  expressed  as  
_I 

L & , R l z , g ]  = -7 [ c  ( k ) / R t R n R t k n  2-1 1 lU 2 

k =  1 

w h e r e  

(43) 

F r o m   ( 4 3 )  and (22) ,  we   s ee   t ha t  J(5) i s   g rea t e r   t han  
zero  and  does  not  depend  on R. Maximizing 
L [ e ,  Rlz ,~]  can  be  accomplished  by  f i rs t   f inding 
the  miniAmum of J(1) with  respect   to  g, and then 
finding R. The   la t te r  is accomplished by taking  the 
der ivat ive of (42)  with  respect  to R and  setting  it 
equal  to  zero.  Doing  this,  one  finds 

R = g { min J(2) ] . A 2  
(44) 

- 
F r o m   ( 2 3 ) ,   w e   s e e   t h a t  E(k) i s  a l inear  function 

of z(k)  and  u(k),  but  is  not a l inear  function of 9; 
therefore ,  J(6J is a l so  a nonlinear  function of, We 
use  the  Marquardt-Levenberg  a lgori thm  to   update  ?, 
i n   o r d e r   t o   d e c r e a s e  J(G-). To  do  this,   we  need  to -i  
compute  the  gradient  and  pseudo-Hessian of J(2) with 
respect   to  9. For   our   p resent   purpose ,   we   redef ine  
the  gradient  gi as  

( 4 5 )  

and  the  pseudo-Hessian Hi a s  

Using a procedure  s imilar   to   the  one  in   [7] ,   we 
de termine   tha t   the   e lements  of gi can  be  computed by 
solving  the  difference  equations 

A(z)Ea(k)  = E(k-1) - z(k-1)  

A ( z )  Eb(k) = -u(k)  
and 

w h e r e  

Ea(k) = aE(k) /aa l  and  Eb(k) jE(k)/aB,  (49) 

Additionally,  aE(k)/aai = e a ( k - i t l )  and -, 

aE(k)/api  = Eb(k- i t l ) ,  i = 2 , .  , . , n. 

Fur the rmore ,   an   e l emen t  of the  pseudo-Hessian  can 
be  computed  f rom  one of the  following  three 

> (50)  
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where  1 5  i 5 n and 1 5 j 5 n. 

Observe  that   we  only  have t o  so lve   t h ree  
difference  equations--(23),   (46)  and  (47)--in  order  to 
compute J ,  Q and  Hi. 

IV.  Block  Component  Method  for  Identification 

In  this  section,  we  show, by means  of decon- 
volution,  how  to  convert  the  identification  problem 
when  u(k)  cannot  be  measured  to  the  identification 
problem  when  u(k)   can  be  measured.  

When c(k)  is   Bernoulli-Gaussian  and 9 and C 
a r e  known a p r io r i ,  we de te rmine  1, R and I by 
maximizing 

Kormylo  and  Mendel  have  shown  that  the  overall 
optimal  solution  for  estimating ;, 2 and R i s   to   f i r s t  
e s t ima te  5 and R and  then  estimate 2. Their  approach 
for   es t imat ing 1 and R was  developed  by  treating I a s  
unknown  driving  noise  [though 9 is  known],  and,  as 
explained  in  Section I ,  this  approach  is   computation- 
ally  intensive. 

Observe  that   when ; is  known (i. e . ,  u is 
known)  maximizing  (53)  is  equivalent  to  maglmizing 
p(zl ; ,q ,e ,   R)   or  An p(cl;, s,S, R)  which  is   exactly  the 
same  as  the  log-likelihood  function  given by  (42). 
Additionally,  when 9 and R are   known,   maximiz ing  
(54)  is equivalent  to  the MLD problem  descr ibed  in  
Section 11. 

Based  on  these  observat ions,   we  suggest   the  
block  component  method  (BCM),  depicted  in  Fig.  1, 
for  computing a local  optimum of the  likelihood 
function s [L, 1, R I 2.9, c I .  

The  first  Plock  in,Fig. 5. provides  initial 
values,  & and  Ro,  for  and  R.  Generally,  we 

choose  the  ini t ia l   value of 3 by determining  the 
minimum-phase  IR  associated  with  covariance 
informat ion   for   the   measurements .  ThAe second 
block  in Fig; 1,   pxovides  estimates of 2; i t   r eqy i r e s  
yalues   for  a an9 R. The  third  block  provides 1 and 
R. Of cour se ,  ;, obtained  f rom  the MVD f i l t e r ,   i s  
used to  update 9 and R. 

Each  block  in  our BCM guarantees  that 
S r r ,  E, R \ z , g J  i nc reases  a t  every  i teration.  When 
S t l , z ,  R \Its! reaches  a local  maximum,  the 
algori thm  s tops.  

0, ,, we  de te rmine  e, R and M by  maximizing 

A 

When u(k) is white  and  gaussian  with  variance 

This  is jus t  a s p e c i a l   c a s e  of the  preceding  s i tuat ion 
in   which  we  set  q(k) = 1 fo r   a l l   k ,  o2 = C and f = g; u 

thus,   we  do  not  have  to  discuss  the  BCM  for  this  case.  

In   our   BCM,  we  assume  that  C is  known,  and, 
therefore ,   we  do  not   es t imate   i t .  If C,is unknown, 
we  set   i t   equal   to  a posit ive  number,   C.  The  reason 
for  doing  this  is  that a scale   factor   cannot   be 
resolved  from  the  convolutional  model 

z(k) = u(k)   “V(k)  t n(k)  = (Ku(k))’:’(EV(k)) 1 t n(k)  when 

both  y(k)  and  V(k) a r e  unknown.  In  our  BCM,  this 
always  occurs  because  even if q(k)  is  known  is 
estimated  via MVD [9]. 

F o r  a discussion  on  the  identifiabil i ty of V(k) 
and R when  is   known,   see [ 161. Because   V(k )  and R 
are   ident i f iable   when u(k) is  known,  if,   in  oFr  Fig. 1 
BCM, G(k) conve rges   t o   t hg t rue   u (k ) ,   t hen   V(k )  
[which is charac te r ized  by & ]  converges   t o   t rue   IR  
VT(k)   a s  N - m. In  other  words,   when  u(k)  is   known, 

the  performanceof   the  block  that  updat:s 1 and R 
depends  on N. In  [17]  it   is  shown  that uML is m o r e  

l ike ly   to   be   c lose   to  u for  high  SNR;  thus,   the 
pe r fo rmance  of our  BCM  depends  on  SNR,  which 
de termines   the   per formanceof   the  MVD f i l t e r ,  and 
N ,  which   de te rmines   the   per formance  of t he  
prediction-error  identification  method. 

V. Computational  Advantages 

Kormylo  and  Mendel   [3]   es t imate   the  wavelet  
and  noise   var iance  using  the  approach  that   t reats   the 
input  u(k) [ =  r (k)q(k) ]   as   an   unknown  dr iv ing   no ise ,  
although  q(k) is assumed  to   be   known.   Thei r  
maximum-likelihood  algorithm is an  i terat ive  one 
that  needs  computationally  intensive  Kalman  filter 
sensit ivity  equations.   Recently,   Goutsias,   Mendel 
and  Chi [8] made  a computational  comparison of 
the i r   a lgor i thm  and   ours   (F ig .   1 ) .   We  present   some 
of these  resul ts   below,  

Assume  tha t  9 ,  1 and h a re   i n   phase -va r i ab leA 
form,  The  total  number of computations  to  update 9 
and R one   t ime,   for   the   Kormylo-Mendel  (i,  e . ,   K M )  
algori thm,  is   approximately 

T = ’  x (12n3t93n  t113nt36)  t ~ ( 8 n  t 3 6 n t 6 6 n t 2 5 ) f l o p s ,  

where  one  f lop  indicates  one  real   multiplication  and 
one  addition.  ,The  total   number of computations  to 
update 9 and R one   t ime,   for   the   Chi -Mendel  (i. e . ,  
CIM) a lgor i thm  i s  

2 1 3 2  
1 2  

(56) 

T2 = 10nN t Tn  (2n2+9nt6)   f lops  , 2 
(57) 

Note  that   T2 << T1. 

In   the  CM algorithm,  we  do  not  have  to  update 
- e and R just   once  during  each  i terat ion.  W e  define 
an   i t e ra t ion   for   our   b lock   component   method  as   one  
in  which i i s  est imated  one  t ime  using  an MVD f i l te r  
and 5 and R are   updated  L times using  the  Marquardt-  
Levenberg  algorithm.  The  total   number of computa- 
t ions  for   an MVD f i l te r  is about   the   same  as   tha t   for  
two  Kalman  f i l ters ,   and  is  

T3  = N(5n t 13n)  flops . 2 
(58) 

The  total   number  of computat ions  for   one  i terat ion of 
the  CM  algori thm  is  

T = L T 2  t T 3 ‘  (59)  

To   i l l u s t r a t e   t hese   numbers ,   a s sume  N = 300 
and n = 4;  then, T = 411,830  f lops,   T2 = 12,  197 

flops  and  T3 = 39, 600 f lops.   The  ra t io  T / T  is about 
1 

1 
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8 f o r  L = 1 and 4 fo r  L = 5. We  have  observed,   f rom 
simulations,   that   when L > 1, our  BCM  converges  in 
fewer   i terat ions  than  when L = 1. 

VI. Ekamples 

In  this  section,  we  provide  an  example  which 
demonstrates   that   our   proposed  Sect ion IV BCXI 
works  well. 

Synthetic  noisy  data  were  generated  by 
convolx-ing  an  input  sequence,  u(k),  with a wavelet ,  
V ( k ) .  and  adding  white  gaussian  noise to  the   resu l t .  

In  every  i teration of our   BCM  we  es t i rpate   once 
using  an MVD f i l te r  and  update:  and R L = 5 t imes  
using  the  Marquardt-Levenberg  a lgori thm.  We  used 
a 4th-order   non-minimum  phase ARMA wavelet 
whose  t ransfer   funct ion  ( taken  f rom [4]) i s  

VT(z)=[-0.76286-1. 5884z-1-0.82356z-2t0.000222419z-3]~ 

T 

[l-2.26332-l-1. 7 7 3 4 z ' 2 - 0 . 4 ~ 8 0 3 z - 3 + 0 . 0 4 5 j 1 6 z - 4 ] ,  
(60) 

F i g u r e  2 depicts  the  synthetic  noisy  data  for  which 
SNR = IO. True   parameter   va lues   for  R, C and X. a r e  
0. 1 6 9 8 x 1 0 - 3 ,  0. 0223  and 0.  0 5 ,  respectively.   The 
total numbe; of mAeasurements  is  S = 300.  Initial 
x.-alues for  R and C were   chosen  to be  0. 2 ~ l O - ~  and 
0. 015,  respectively.   For  reasons  explained  in 
Section IV p a r a m e t e r  C was  f ixed  at   i ts   init ial   value.  

F i g u r e  3 depicts  both  the  init ial  IR Vo(k),  and 

the   t rue  IR VT(k).  IR  Vo(k)  was  obtained  using a 

singular  value  decomposition  (SVD)  method [b];  i t s  
t ransfer   funct ion  is  

V ( z ) = [ - l .  047377+2.5217122 -1 -2 .104901 i2+0 .622~523 i3 ] /  0 

~ 1 - 2 . 7 3 5 7 5 5 ~ ~ 1 t 2 . 7 8 4 9 4 9 ~ ~ 2 - ~ . 1 ~ 0 0 9 2 z ~ 3 + 0 . 1 6 3 8 4 8 z ~ 4 ] .  
(61) 

One  can  check  that V (k )  i s  minimum  phase.   Observe,  

also,   that   al though  the  init ial   wavelet   looks  similar t o  
the   t rue   wavele t ,   i t s   phase   i s   incor rec t .  

0 

Using  the ARMA p a r a m e t e r s  of Vo(k) a s   t h e  
A 

in i t ia l   parameters ,  G ,  in  our  BCM,  the  BCM 

converged i5 6 i terat ions.   The  wavelet  $(k) a s s o -  
ciated  with 2 is   non-minimum  phase  and  has  the 
t ransfer   funct ion 

<(z )=  [-1. 016298-2.23804z-1-1.347001z-2t0.124965~- 3 ] /  

[ l - 2 . 3 7 0 8 7 j z - 1 t 2 . 0 1 5 6 8 2 z - 2 - 0 . 6 8 7 2 5 2 5 ~ 3 + 0 . 0 9 2 2 4 9 0 2 ~ 4 ~ .  

A ( 6 2 )  
F i g u r e  4 depicts  V(k)  and  VT(k).  Observe  how 
A 

c lose   V(k)   i s  t o  VT(k) .   F igu re  5 depicts l>(k) and 

u(k) .   Because  q(k)   has   been  assumed to  be  known  for 
a l l   k ,   only  has   non-zero  values   a t   those  t ime  points  
where  u(k) does.   We  see  that   c(k)   is   a lso  very  c lose 
t o  y(k).  

A 

Thenfinal   es t imate   for  R i s  R = 0. 1545x10- . 3 

Quantity R a l s o   r e p r e s e n t s   t h e   m e a n - s q u a r e   e r r o r  of 
the  estimated  output. 

The  CPU  t ime  on a PDP-1O/KI  computer  for 
this  example  was 1 6  seconds.   For   other   examples;  
s e e  [ l h ] .  

VII. Conclusions 

We  have  proposed a fast   (computationally 
nonintensive)  maximum-likelihood  algorithm  that  can 
e s t ima te  a non-minimum  (or   minimum)  phase  IR  for  
a l inear   t ime-invariant   system.  Our  a lgori thm  is   an 
iterative  block  component  method  that  includes  two 
s tages ,   one   s tage  of which  is  deconvolution  and  the 
other   s tage of which  is   prediction-error  identifica- 
t ion.   The  user   may  wish,   and  can,   replace  the 
pred ic t ion-er ror   a lgor i thm  wi th   h i s   favor i te  ML 
identification  algorithm. 

In t ime-ser ies   ident i f icat ion  problems  where 
t h e r e   a r e  no t rue   parameters   the   Xlehra /Schweppe  
approach t o  parameter  estimation,  which  is  
computationally  intensive,  can  be  replaced  by  our 
BCM. 

Experiences  with  our  method  indicates  that  it  
works  wel l   and  saves  about   an  order  of magnitude  in 
computation. 
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Fig. 1. Block component  method. 
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Fig. 2. Synthetic  noisy  data  with SKR = 10. 
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Fig.  4. Estimated  wavelet .   Solid  l ine  depicts 
t rue  wavelet ,   and  dashed li%e depicts  
scaled  es t imated  wavelet  KV(k) 
(K = 0. 7 5 ) .  

Fig ,  5. Estimated  input  signal.   Circles 
depic t   t rue   input   s igna l ,   and   bars  
depict   scaled  estimated  input  signal 
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Fig. 3. Init ial   4th-order  wavelet .   Solid 
l ine  depicts  true  wavelet ,   and 
dashed  line  depicts  initial  wavelet. 
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